
Phase transformations   II - 1Thermodynamics

Plan

0.    Rappels de thermodynamique

1. Corps purs

2. Systèmes binaires

3. Equilibre des systèmes multi-éléments

4. Effet de la pression – équation de Clausius-Clapeyron 

5. Effet de la courbure/taille – paramètre de Gibbs-Thomson

Lecture II: Thermodynamique des transformations de phase

Objectif

Après un bref rappel des corps purs, nous allons considérer la thermochimie d’un

alliage constitué de deux éléments A et B. Deux cas seront traités: les solutions idéales

et régulières. Le potentiel chimique sera introduit, ainsi que la règles des phases de

Gibbs. Les effets des paramètres externes ou internes sur le déplacement de

l’équilibre des phases seront détaillés: pression (Clausius-Clapeyron), courbure/taille

(Gibbs-Thomson, Buffat).
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Rappels de thermodynamiques

1
2

3

T 

Variables (intensive, extensive) = (T, S), (p, V), (𝜇𝑖, 𝑁𝑖)

µi

p

dS

Bain mécanique

Bain chimique

Bain thermique

Autres couplages possibles:

Mécanique (, )
Electrique (V, q)
Magnétique (B,m) B

chaleur 𝜕𝑄

(fermé/ouvert)

(isochore/expansible)

(adiabatique/diathermique)

dq

V

e-

System

Bain magnétique

Bain électrique
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𝑑𝑈 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉 + ෍𝜇𝑖 𝑑𝑁𝑖Energie interne U

Energie de Helmholtz F = U - TS 𝑑𝐹 = −𝑆𝑑𝑇 − 𝑝𝑑𝑉 + ෍𝜇𝑖 𝑑𝑁𝑖

Enthalpie H = U + pV 𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑝 + ෍𝜇𝑖 𝑑𝑁𝑖

Energie de Gibbs G = U – TS + pV 𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝 + ෍𝜇𝑖 𝑑𝑁𝑖

𝜕𝑄 𝑟𝑒𝑣 𝜕𝑊𝑟𝑒𝑣 𝜕𝑐ℎ𝑖𝑚𝑟𝑒𝑣

Comme U, S, V and N 

sont des variables 

extensives, nous avons:
𝑈 + −𝑇𝑆 + 𝑝𝑉 −෍𝜇𝑖 𝑁𝑖 = cst

 Equation de Gibbs-Duhem
Lien entre les changements des variables intensives

𝑆𝑑𝑇 − 𝑉𝑑𝑝 + ෍𝑁𝑖𝑑𝜇𝑖 = 0

Rappels de thermodynamiques

Convention : positif si l’échange est un gain pour le system

Energies potentielles d’interaction entre 

le système et son environnement
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cp

cp, H, S, et G d’un corps pur sont des fonctions de (T,p)

Ho

𝑐𝑝 =
𝜕𝐻

𝜕𝑇
𝑝

= 𝑇
𝜕𝑆

𝜕𝑇
𝑝

𝐻 = න
298

𝑇

𝑐𝑝𝑑𝜃 𝑆 = න
0

𝑇 𝑐𝑝
𝜃
𝑑𝜃Fonctions importantes:

La dépendance de Cv en T est expliquée 
par les théories de Debye et d’Einstein 
(échanges par quanta). 

Note: Cp  Cv pour les solides

-S

cp

G

H

Rappels de thermodynamiques
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1. Corps purs

avec R la constante des gaz parfaits R = 8.314 J K-1 mol-1 = 𝒩𝑎𝑘𝐵

Capacités thermiques cp in J K-1 mol-1

Pour H, N, O, F, Cl, Br, I les valeurs sont celles de H2, N2, F2, Cl2, Br2, I2 dans leur état de référence à 25°C et 1 atm.

Loi de Dulong et Petit
Pour un solide Cp = Cv = 3R  

3R (métaux)

5R/2 
(gaz monoatomique)

(7-9)R/2 
(gaz diatomique)

cp - cv = R 
pour un gaz 
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Pour un système fermé l’énergie de Gibbs vaut 𝐺 𝑇, 𝑝 = 𝐻 − 𝑇𝑆

1. Corps purs

𝑑𝐺 = 𝑉𝑑𝑝 − 𝑆𝑑𝑇

A T et p = cst, l’équilibre du système est donné par le minimum de 𝐺.

Si le système est un corps pur d’élément A, et peut être sous la forme de 

deux phases (transformation allotropique), 𝐺𝑚
𝑡𝑜𝑡 = 𝑛𝐴

𝛼𝐺𝑚
𝛼 + 𝑛𝐴

𝛽
𝐺𝑚
𝛽

où “m” réfère aux quantités molaires (en indice ou en exposant)

• 𝑛𝐴
𝛼 + 𝑛𝐴

𝛽
= nb de moles d’atomes A , fixé

• 𝐺𝑚
𝛼 est indépendant de 𝑛𝐴

𝛼 , et 𝐺𝑚
𝛽

est indépendant de 𝑛𝐴
𝛽

 𝑑𝐺𝑚
𝑡𝑜𝑡 = 𝑑𝑛𝐴

𝛼𝐺𝑚
𝛼 + 𝑑𝑛𝐴

𝛽
𝐺𝑚
𝛽
= 𝑑𝑛𝐴

𝛼 𝐺𝑚
𝛼 − 𝐺𝑚

𝛽
= 0

𝐺𝑚
𝛼 = 𝐺𝑚

𝛽
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1. Corps purs

On considère la transformation par chauffage d’un corps pur de sa phase solide à sa 

phase liquide (transition 1st ordre). A la transition, le système absorbe une quantité 

d’énergie, l’enthalpie de fusion, aussi appelée chaleur latente Lm.

Tf

Solide (s) Liquide (l)

𝐺𝑚
𝑠 𝑇 = 𝐻𝑚

𝑠 (T) − T 𝑆𝑚
𝑠 (T)

𝐺𝑚
𝑙 𝑇 = 𝐻𝑚

𝑙 (T) − T 𝑆𝑚
𝑙 (T)

A 𝑇 = 𝑇𝑓 , 𝐺𝑚
𝑠 𝑇𝑓 = 𝐺𝑚

𝑙 𝑇𝑓 ,   D𝐺𝑚
s𝑙

𝑇𝑓 = 0

𝐿𝑚 chaleur latente molaire de fusion
𝐿𝑚  0 pour une transition de 1st ordre 

= 0 pour une transition de 2ème ordre 

D𝐻𝑚
s𝑙

= 𝐿𝑚 = 𝑇𝑓 D𝑆𝑚
s𝑙

à T = 𝑇𝑓
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La fusion est un des nombreux cas dans lequel le système tend à modérer l’effet d’un 

changement extérieur (le chauffage est ralenti par l’absorption de la chaleur latente). Il existe 

cependant des cas contraires dans lesquels le système réagit brusquement “par avalanche”

 Cristallisation de verres métalliques à base platine. 

A
C

B

glass crystal

A 

B

C

From Simon Mestre-Rinn, 
student’s project, 2019, LMTM

1. Corps purs

Mise au four du verre métallique à 250°C (température de cristallisation), et suivi en température. 
On examine 3 cas A, B, C:
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Les enthalpies de 
transformation sont déduites 
par intégration 

La calorimétrie différentielle, Differential Scanning 

Calorimetry (DSC) permet déterminer les températures de 

transformations endothermiques et exothermiques, et 

de mesures les enthalpies associées.  Il existe deux types 

de DSC: 

• Par compensation de puissance  pour maintenir la 

température égale entre l’échantillon et la référence qui 

sont dans deux enceintes séparées

• Par mesure de la différence de température entre 

l’échantillon et la référence mis dans la même enceinte

1. Corps purs



Phase transformations   II - 10Thermodynamics

DH = TDS  log(DH) = log(T)+log(DS)

Entropie de fusion
DSf (Al) = 12 J K-1 mol-1

DSf (Si) = 30 J K-1 mol-1

DSf (Fe) = 8 J K-1 mol-1 v  R
DSf (ice) = 22 J K-1 mol-1

Chaleur latente de fusion 
Lf (Al) = 11 kJ/mol
Lf (Si) = 50 kJ/mol
Lf (Fe) = 14 kJ/mol
Lf (ice) = 6 kJ/mol

Entropie de vaporisation 
Trouton law:
DSlv  Sv = 85-88 J K-1 mol-1 = 10.5 R 

Déviation pour des liquides contenant des liaisons 
hydrogène (H2O, éthanol etc)

1. Corps purs

x10
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• On prend un verre à double paroi

• On le remplit d’eau

• On le place dans une enceinte et on y fait le vide

Que va-t-il se passer?

Verre double paroi

thermocouples p
u
m
p

pompe

1. Corps purs
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1 2

3 4

eau Eau en ébullition

Eau + eau en ébullition + glace glace

From Mathijs Van der Meer, 
2021, LMTM

a) 20 mbar (= 2 kPa)   = pression de vapeur
saturante de l’eau à 17°C

b) Point triple de l’eau: 6 mbar, 0.01°C

Vaporisation

So
lid

if
ic

at
io

n

a) b)

1. Corps purs

Sublimation 

1 2

3

4

Evaporation 
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D𝐺𝑚
𝑙→𝑠 𝑇 =

DT

𝑇𝑓
D𝐻𝑚

𝑙→𝑠 𝑇𝑓 = DT D𝑆𝑚
𝑙→𝑠 𝑇𝑓

avec DT = 𝑇 − 𝑇𝑓

Peut être retrouvé directement par la différence de pentes de G entre liquide 
et solide: D(−S) = D𝐺/DT

𝐺𝑚
𝑙 𝑇 = 𝐻𝑚

𝑙 (T) − T 𝑆𝑚
𝑙 (T)

𝐺𝑚
𝑠 𝑇 = 𝐻𝑚

𝑠 (T) − T 𝑆𝑚
𝑠 (T)

A 𝑇 = 𝑇𝑓 D𝐻𝑚
𝑙→𝑠 𝑇𝑓 = 𝑇𝑓D𝑆𝑚

𝑙→𝑠 𝑇𝑓

A 𝑇 < 𝑇𝑓 et 𝑇 ≈ 𝑇𝑓, 

D𝐻𝑚
𝑙→𝑠(𝑇) ≈ D𝐻𝑚

𝑙→𝑠 𝑇𝑓

D𝑆𝑚
𝑙→𝑠(𝑇) ≈ D𝑆𝑚

𝑙→𝑠 𝑇𝑓

 D𝐺𝑚
𝑙→𝑠 𝑇 = 𝐺𝑚

𝑠 𝑇 − 𝐺𝑚
𝑙 𝑇 = D𝐻𝑚

𝑙→𝑠 𝑇 − 𝑇 D𝑆𝑚
𝑙→𝑠 𝑇

≈ D𝐻𝑚
𝑙→𝑠 𝑇𝑓 − 𝑇 D𝑆𝑚

𝑙→𝑠 𝑇𝑓 = D𝐻𝑚
𝑙→𝑠 𝑇𝑓 −

𝑇

𝑇𝑓
D𝐻𝑚

𝑙→𝑠 𝑇𝑓

car transition du 1st ordre

D𝐺𝑚
𝑠→𝑙 𝑇 =

D𝑇

𝑇𝑓
𝐿𝑚

Relation très utile pour les transformations du 1er ordre type l  s
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D𝐺

1. Corps purs
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Le potentiel chimique, mA, est défini par le gain en énergie de Gibbs du système entier 

lorsque dnA moles d’atomes A y sont ajoutés . Pour un système binaire, c’est une 

fonction de (XA, XB, p,T) où XA et XB sont les fractions molaires de A and B (XA + XB =1) 

2. Systèmes binaires, potentiel chimique

dnA

On ajoute A and B atomes peu à peu de telle manière que XA et XB ne changent pas, 

donc mA et mB restent constant. Quand nous avons nA + nB moles de (A+B), alors:

𝜇𝐴 =
𝜕𝐺

𝜕𝑛𝐴 𝑛𝐵,𝑝,𝑇

Si T, p cst:     

𝑋𝐴 =
𝑛𝐴

𝑛𝐴 + 𝑛𝐵
𝑋𝐵 =

𝑛𝐵
𝑛𝐴 + 𝑛𝐵

avec and 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝 +෍𝜇𝑖𝑑𝑛𝑖

𝑑𝐺 = 𝜇𝐴𝑑𝑛𝐴 + 𝜇𝐵𝑑𝑛𝐵

𝐺 = 𝜇𝐴 𝑛𝐴 + 𝜇𝐵 𝑛𝐵 𝐺𝑚= 𝜇𝐴 𝑋𝐴 + 𝜇𝐵 𝑋𝐵
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 Les potentiels chimiques sont des 

fonctions de la fraction molaire XB et se 

trouvent graphiquement par 

l’intersection de la tangente à la courbe 

de  Gm avec les axes verticaux

XB

Gm

A B

mB

mA

XB

Gm
A

Gm
B

T fixé

Gm = mA XA+ mB XB

avec  𝑑𝑋𝐴 = −𝑑𝑋𝐵

𝐺𝐴
𝑚 = 𝐺𝑚 𝑋𝐴 = 1 = 𝜇𝐴 𝑋𝐴 = 1

𝐺𝐵
𝑚 = 𝐺𝑚 𝑋𝐵 = 1 = 𝜇𝐵 𝑋𝐵 = 1

2. Systèmes binaires, potentiel chimique

Note :

𝑑𝐺𝑚

𝑑𝑋𝐵
= 𝜇𝐵 − 𝜇𝐴

𝑑𝐺 = 𝜇𝐴 d𝑛𝐴 + 𝜇𝐵 d𝑛𝐵 ⟹ 𝑑𝐺𝑚= 𝜇𝐴 𝑑𝑋𝐴 + 𝜇𝐵 𝑑𝑋𝐵
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Note: 𝒩𝑎 = nombre d’Avogadro ≈ 6,02. 1023, R = const. des gaz parfaits = 𝒩𝑎𝑘𝐵 = 8,31 𝐽 𝑚𝑜𝑙−1𝐾−1

Considérons un système constitué de nA (= NA /𝒩𝑎 ) moles of A and nB moles of B. 

Avant mélange, l’énergie de Gibbs de ce système est 

Dans l’hypothèse d’une solution idéale, AA = BB = AB (énergies de liaison), Le mélange augmente 

l’entropie configurationnelle (entropie de mélange). L’énergie de Gibbs devient:

𝑁𝐴+𝐵
𝑎𝑡

𝑁𝐴
𝑎𝑡

(Stirling)

𝐺 = nA𝐺𝐴
𝑚 + nB𝐺𝐵

𝑚

XA =
𝑛𝐴

𝑛𝐴+𝑛𝐵
and XB =

𝑛𝐵

𝑛𝐴+𝑛𝐵

𝐺𝑚 = XA𝐺𝐴
𝑚 + XB𝐺𝐵

𝑚

avec

𝐺 = nA𝐺𝐴
𝑚 + nB𝐺𝐵

𝑚 − 𝑘𝐵𝑇 ln
𝑁𝐴+𝑁𝐵 !

𝑁𝐴!𝑁𝐵!

𝐺𝑚 = XA𝐺𝐴
𝑚 + XB𝐺𝐵

𝑚 + 𝑅𝑇 (𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵ln 𝑋𝐵)

2. Systèmes binaires, solutions idéales
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XB

Gm

A B

mB

mA

XB

Gm
A

Gm
B

T fixée

R
T

ln
X

B

R
T

ln
X

A

𝜇𝐴 = 𝐺𝐴
𝑚 + 𝑅𝑇 𝑙𝑛𝑋𝐴

𝜇𝐵 = 𝐺𝐵
𝑚 + 𝑅𝑇 𝑙𝑛𝑋𝐵

𝐺𝑚 = 𝜇𝐴𝑋𝐴 + 𝜇𝐵𝑋𝐵
𝐺𝑚 = 𝑋𝐴𝐺𝐴

𝑚 + 𝑋𝐵𝐺𝐵
𝑚 + 𝑅𝑇 𝑋𝐴𝑙𝑛𝑋𝐴 + 𝑋𝐵𝑙𝑛𝑋𝐵

∆𝐺𝑚= 𝑅𝑇 (𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵ln 𝑋𝐵)

2. Systèmes binaires, solutions idéales
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Effet de T

Si T , Gm
A et Gm

B  (de –Sm
A dT et –Sm

B dT) 

Dérivée 

seconde:

Pente:

𝑑𝐺𝑚

𝑑𝑋𝐵
= mB − mA = 𝐺𝐵

𝑚 − 𝐺𝐴
𝑚 + 𝑅𝑇 𝑙𝑛𝑋𝐵 − 𝑅𝑇 𝑙𝑛𝑋𝐴

lim ቤ
𝑑𝐺𝑚

𝑑𝑋𝐵
𝑋𝐵→0 = −∞ lim ቤ

𝑑𝐺𝑚

𝑑𝑋𝐵
𝑋𝐵→1 = +∞

𝑑2𝐺𝑚

𝑑𝑋𝐵
2 = 𝑅𝑇

1

𝑋𝐵
+

1

1 − 𝑋𝐵
=

𝑅𝑇

𝑋𝐴𝑋𝐵

Courbure d’une fonction 𝑐𝑜𝑢𝑟𝑏 =
𝑓"

(1+𝑓′2)3/2

(minimum at 𝑋𝐵 = ½ )

 𝑐𝑜𝑢𝑟𝑏 𝑇2 > 𝑐𝑜𝑢𝑟𝑏 𝑇1

 La courbure de l’énergie de Gibbs s’accentue avec T.

XB

E
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A B

Gm
A

Gm
B

T2 > T1

Gm
A

Gm
B

T1

RT X
A
lnX

A
+ X

B
lnX

B( )

XB
½ 

2. Systèmes binaires, solutions idéales
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Les solutions régulières sont d’un point de vue de la distribution des atomes comme les solutions 

idéales (comme si les atomes s’ignoraient), sauf qu’on prend malgré tout en compte leurs énergies 

d’interaction. Un terme d’enthalpie de mélange vient donc s’ajouter à l’entropie de mélange. En prenant 

en compte les liaisons entre proches voisins, avec z le nombre de voisins (= 4 en 2D), nous avons:

A
v
a
n

t:

A
p

rè
s
:

L’enthalpie de mélange est

Gm = XAGm
A + XBGm

B + RT (XA lnXA + XB lnXB) + W XAXB
L’énergie molaire de Gibbs est

𝐻𝑚 = 𝑋𝐴𝒩𝑎 𝑧
𝜀𝐴𝐴
2

+ 𝑋𝐵𝒩𝑎 𝑧
𝜀𝐵𝐵
2

𝐻𝑚′ = 𝒩𝑎 𝑧 𝑋𝐴
2
𝜀𝐴𝐴
2

+ 𝑋𝐵
2
𝜀𝐵𝐵
2

+ 𝑋𝐴𝑋𝐵𝜀𝐴𝐵

∆𝐻𝑚𝑖𝑥
𝑚 = 𝐻𝑚′ − 𝐻𝑚 = Ω 𝑋𝐴𝑋𝐵 𝑎𝑣𝑒𝑐 Ω = 𝒩𝑎 𝑧 𝜀𝐴𝐵 −

𝜀𝐴𝐴+𝜀𝐵𝐵

2

2. Systèmes binaires, solutions régulières
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Cas W > 0: Les éléments A and B « ne s’aiment pas ». A haute température le terme entropique 

−𝑇∆𝑆𝑚𝑖𝑥
𝑚 domine et Gm reste convexe.  A basse température, c’est l’enthalpie de mélange ∆𝐻𝑚𝑖𝑥

𝑚

qui domine menant à une démixtion et un « gap » de miscibilité.

XBA BX1
B

Gm
A

Gm
B

T basse

Gm

Gm
ideal

mB

mA

X2
B

Gap de miscibilité

XBA BXB

Gm
A

Gm
B

T haute

Gm

Gm
ideal

DHm
mix DHm

mix

2. Systèmes binaires, solutions régulières
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Cas W < 0: Les éléments A et B “s’aiment bien”. Gm reste convexe à toutes les températures et 

l’enthalpie de mélange renforce l’effet de l’entropie de mélange.

XB

Gm

A B

mB
mA

XB

Gm
A

Gm
B

Gm

DHm
mix

Gm
ideal R

T
ln

 a
B

R
T

ln
 a

A

2. Systèmes binaires, solutions régulières



Phase transformations   II - 22Thermodynamics

mA = 𝐺𝐴
𝑚 + 𝑅𝑇 𝑙𝑛𝑋𝐴 + Ω 𝑋𝐵

2 = 𝐺𝐴
𝑚 + 𝑅𝑇 𝑙𝑛𝑋𝐴 + Ω (1 − 𝑋𝐴)

2

mB = 𝐺𝐵
𝑚 + 𝑅𝑇 𝑙𝑛𝑋𝐵 + Ω 𝑋𝐴

2 = 𝐺𝐵
𝑚 + 𝑅𝑇 𝑙𝑛𝑋𝐵 + Ω (1 − 𝑋𝐵)

2

On peut identifier mA et mB les facteurs de XA et XB depuis la 1ère équation en écrivant

terme W XAXB en utilisant le fait que W XA XB = W (XA
2 XB + XA XB

2) = W (XA
2 XB + XA XB

2)

Nous avons vu que pour les solutions régulières 

Gm = XAGm
A + XBGm

B + RT (XA lnXA + XB lnXB) + W XAXB

Or nous avons vu aussi que l’énergie de Gibbs peut toujours s’écrire 

Gm = mA XA+ mB XB

2. Systèmes binaires, solutions régulières

൜
𝐺𝑚= 𝜇𝐴 𝑋𝐴 + 𝜇𝐵 𝑋𝐵

𝑑𝐺𝑚 = 𝜇𝐴 𝑑𝑋𝐴 + 𝜇𝐵 𝑑𝑋𝐵
⟹ 𝑋𝐴𝑑𝜇𝐴 + 𝑋𝐵 𝑑𝜇𝐵 = 0 (Gibbs−Duhem)De plus:

Nous obtenons donc 
𝑑𝜇𝐵

𝑋𝐴
=

−𝑑𝜇𝐴

𝑋𝐵
=

(𝑋𝐴+𝑋𝐵) 𝑑𝜇𝐵

𝑋𝐴
= 𝑑𝜇𝐵 − 𝑑𝜇𝐴 = 𝑑(𝜇𝐵 − 𝜇𝐴)

Rappelons que la pente de la courbe de l’énergie de Gibbs est   
𝑑𝐺𝑚

𝑑𝑋𝐵
= 𝜇𝐵 − 𝜇𝐴 , 

et dérivons encore
𝑑2𝐺𝑚

𝑑𝑋𝐵
2 =

𝑑(𝜇𝐵−𝜇𝐴)
𝑑𝑋𝐵

=
1

𝑋𝐴

𝑑𝜇𝐵

𝑑𝑋𝐵

Et donc la courbure de l’énergie de Gibbs d’une solution régulière est 

𝑑2𝐺𝑚

𝑑𝑋𝐵
2 =

𝑅𝑇

𝑋𝐴𝑋𝐵
− 2Ω



Phase transformations   II - 23Thermodynamics

Pour des solutions binaires régulières,  

l’activité de chaque élément est définie par:

Question: “activité”, mais activité à quoi, au mélange ou à la démixtion?

Réponse : Grande valeur de 𝑎𝐵  𝜇𝐵 élevé  B moins stable en solution

 tendance à la démixtion  activité à quitter la solution

Pour la transformation liquide  gaz, une forte activité d’un atome ou 

d’une molécule signifie une grande volatilité (et donc une plus grande 

pression saturante)

2. Systèmes binaires, solutions régulières

Dans tous les cas, W  0 ou W < 0, les potentiels chimiques de A et B, mA et mB deviennent des 

fonctions non plus des fractions molaires mais des activités chimiques aA et aB selon:

𝑎𝐴 = 𝑒−
𝐺𝐴
𝑚−𝜇𝐴
𝑅𝑇

𝑎𝐵 = 𝑒−
𝐺𝐵
𝑚−𝜇𝐵
𝑅𝑇

𝜇𝐴 = 𝐺𝐴
𝑚 + 𝑅𝑇 𝑙𝑛𝑎𝐴

𝜇𝐵 = 𝐺𝐵
𝑚 + 𝑅𝑇 𝑙𝑛𝑎𝐵

𝑎𝐴 = 𝑋𝐴 𝑒𝑥𝑝
Ω 1 − 𝑋𝐴

2

𝑅𝑇

𝑎𝐵 = 𝑋𝐵 𝑒𝑥𝑝
Ω 1 − 𝑋𝐵

2

𝑅𝑇



𝑋𝐵

𝑎𝐵

Le coefficient d’activité de B est défini par 𝛾𝐵 =
𝑎𝐵

𝑋𝐵

C’est la pente de la courbe d’activité.
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2. Systèmes binaires, solutions régulières

Pour une solution A-B,

 Loi de Henry (activité du soluté B): 𝑋𝐵 ≈ 0 ⇒ 𝛾𝐵 ≈ 𝑒𝑥𝑝
Ω

𝑅𝑇

Pour une solution avec A fortement dilué dans B,
 Loi de Raoult (activité du solvant B):  𝑋𝐵 ≈ 1 ⇒ 𝛾𝐵 ≈ 1 (comme une solution idéale)

Ces deux lois sont le plus généralement utilisées pour des équilibres liquides – gaz.
Note: si l'équilibre liquide-vapeur du soluté répond à la loi de Henry, alors celui du solvant 
répond à la loi de Raoult, et réciproquement

Loi de Henry (sans démo) : A température constante et à saturation, la quantité de gaz dissous 

dans un liquide est proportionnelle à la pression partielle qu'exerce ce gaz sur le liquide: 𝑋𝐵
𝑙 = 𝐻 𝑝𝐵 , 

avec 𝑝𝐵 ≈ 𝑋𝐵
𝑔
𝑃 (loi de Dalton, valable pour les gaz parfaits ou pour 𝑋𝐵

𝑔
≪ 1)

Par exemple en un point où la pression est le double de la pression atmosphérique (c'est le cas dans l'eau à 10,3 

m de profondeur), chaque gaz de l'air pourra se dissoudre 2 fois mieux qu'en surface. Ceci explique le problème 

des plongeurs : en profondeur, l'azote de l'air (que le plongeur stocke puisque les cellules ne consomment que 

l'oxygène) a tendance à se dissoudre dans le sang du plongeur. Si celui-ci remonte trop vite, l'azote dissous va 

avoir tendance à se dilater rapidement dans l'organisme, ce qui peut créer des bulles dans les vaisseaux sanguins 

et une mort par embolie gazeuse.

Pour info
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Loi de Raoult : Pour une solution idéale liquide dont la phase vapeur est un mélange de gaz parfaits, à 
température constante, la pression partielle 𝑝𝐵 de la phase vapeur d'un constituant B est égale au produit 

de sa fraction molaire en phase liquide par sa pression de vapeur saturante (B pur): 𝑝𝐵 = 𝑋𝐵
𝑔
𝑃 = 𝑋𝐵

𝑙 𝑝𝐵
𝑠𝑎𝑡 , 

avec P pression totale de la vapeur. 

Note: pour un corps B pur, 𝑋𝐵
𝑔
= 𝑋𝐵

𝑙 = 1 ⇒ 𝑝𝐵 = 𝑃 = 𝑝𝐵
𝑠𝑎𝑡

2. Systèmes binaires, solutions régulièresPour info

Démo: 

A l’équilibre  𝜇𝐵
𝑙 𝑃, 𝑇, 𝑋𝐵

𝑙 = 𝜇𝐵
𝑔
𝑃, 𝑇, 𝑋𝐵

𝑔
, avec

• 𝜇𝐵
𝑙 𝑃, 𝑇, 𝑋𝐵

𝑙 = 𝜇𝐵
𝑙∗ 𝑃, 𝑇 + 𝑅𝑇 𝑙𝑛𝑋𝐵

𝑙

• 𝜇𝐵
𝑔
𝑃, 𝑇, 𝑋𝐵

𝑙 = 𝜇𝐵
𝑔∗

𝑃, 𝑇 + 𝑅𝑇 𝑙𝑛𝑋𝐵
𝑔

• 𝜇𝐵
𝑙∗ 𝑃, 𝑇 ≈ 𝜇𝐵

𝑙∗ 𝑝𝐵
𝑠𝑎𝑡, 𝑇

• 𝜇𝐵
𝑔∗

𝑃, 𝑇 = 𝜇𝐵
𝑔∗

𝑝𝐵
𝑠𝑎𝑡, 𝑇 + 𝑝𝐵׬

𝑠𝑎𝑡
𝑃

𝑉𝐵
𝑚∗𝑑𝑝 = 𝜇𝐵

𝑔∗
𝑝𝐵
𝑠𝑎𝑡, 𝑇 + 𝑅𝑇 ln

𝑃

𝑝𝐵
𝑠𝑎𝑡

• 𝜇𝐵
𝑙∗ 𝑝𝐵

𝑠𝑎𝑡, 𝑇 = 𝜇𝐵
𝑔∗

𝑝𝐵
𝑠𝑎𝑡, 𝑇

𝑉𝐵
𝑚∗= volume molaire du gaz B pur (parfait)

 𝑝 𝑉𝐵
𝑚∗ = 𝑅𝑇De plus pour le corps pur B

 𝑋𝐵
𝑙 = 𝑋𝐵

𝑔 𝑃

𝑝𝐵
𝑠𝑎𝑡 , cqfd
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• 𝜇𝐵
𝛼 = 𝐺𝐵

𝑚,𝛼 + 𝑅𝑇 𝑙𝑛𝑎𝐵 𝑎𝑣𝑒𝑐 𝑎𝐵 = 𝑋𝐵𝑒𝑥𝑝
Ω 1−𝑋𝐵

2

𝑅𝑇

= 𝐺𝐵
𝑚,𝛼 + 𝑅𝑇 𝑙𝑛𝑋𝐵 + Ω(1 − 𝑋𝐵)

2

• 𝜇𝐵
𝛽
= 𝐺𝐵

𝑚,𝛽

Effet de la température sur le solubilité

On considère une solution binaire A-B dans laquelle B est soluble dans 

la phase  phase faite principalement de A, et A est quasi insoluble 

dans la phase  phase (100% B). On considère aussi que A et B 

forment une solution régulière dans la phase  avec Ω > 0.

→ 𝑅𝑇 𝑙𝑛𝑋𝐵
𝑒 + Ω(1 − 𝑋𝐵

𝑒)2= −∆𝐺𝐵 avec ∆𝐺𝐵 = 𝐺𝐵
𝑚,𝛼 − 𝐺𝐵

𝑚,𝛽

A l’équilibre 𝜇𝐵
𝛼 = 𝜇𝐵

𝛽

Pour 𝑋𝐵
𝑒 ≪ 1, 𝑋𝐵

𝑒 = 𝑒𝑥𝑝 −
∆𝐺𝐵 +Ω

𝑅𝑇

En écrivant ∆𝐺𝐵 = ∆𝐻𝐵 − 𝑇∆𝑆𝐵 , il vient: 𝑋𝐵
𝑒 = 𝐴 𝑒𝑥𝑝 −

𝑄

𝑅𝑇

𝑄 = ∆𝐻𝐵 + Ω > 0

𝐴 = exp
−∆𝑆𝐵
𝑅

𝑎𝑣𝑒𝑐

2. Systèmes binaires, solutions régulières

𝐺𝐴
𝑚,𝛼

𝐺𝐵
𝑚,𝛼

𝐺𝐵
𝑚,𝛽



+

solvus



Phase transformations   II - 27Thermodynamics

3. Equilibre de systèmes hétérogène, règle de Gibbs

Pour un système binaires A-B présentant deux phases 𝛼 et 𝛾, le 

potentiel chimique de chaque élément A ou B doit être égal dans 

chaque phase: 

𝜇𝐴
𝛼 = 𝜇𝐴

𝛽
𝜇𝐵
𝛼 = 𝜇𝐵

𝛽

T et p fixées

𝑋𝐵
𝛼

𝑋𝐵
𝛽

𝜇𝐴
𝛼 = 𝜇𝐴

𝛽

𝜇𝐵
𝛼 = 𝜇𝐵

𝛽

L’énergie de Gibbs de chaque phase 𝛼 ou 𝛽 dépend des 

fractions molaires, de la température T et de la pression p.

Il existe 4 variables, T, p, 𝑋𝐵
𝛼, 𝑋𝐵

𝛽
, mais aussi les 2 

contraintes d’égalités des potentiels chimiques. 

 4 − 2 = 2 degrés de liberté

Si on fixe T et p, les fractions molaires de B dans les phases 

𝛼 et 𝛾, 𝑋𝐵
𝛼 et 𝑋𝐵

𝛽
, deviennent elles aussi fixées. 

𝛽

∆𝐺
𝛽→𝛼+𝛽
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On étend le raisonnement à un système à NE éléments et NP phases

Règle des phases Gibbs: 𝑓 = 2 + NE− NP

XA
1 , 𝜇𝐴

1 XA
2 , 𝜇𝐴

2 XA
3  , 𝜇𝐴

3

XB
1 ,   𝜇𝐵

1 XB
2 ,   𝜇𝐵

2 XB
3  , 𝜇𝐵

3

XC
1 , 𝜇𝐶

1 XC
2 , 𝜇𝐶

2 XC
3  , 𝜇𝐶

3

Phases 1, 2, 3

El
é

m
en

ts
 A

, B
, C

NP

NE

Nombre de degrés de libertés f  = Nb de variables  Nb of contraintes = 2 + NE − NP

1
2

2

Nombre de variables = 2 + NPNE

Nombre de contraintes numériques = NP

parce que σ𝑋𝐸=𝐴,𝐵,𝐶…
P=1 = 1,  σ𝑋𝐸=𝐴,𝐵,𝐶…

𝑃=2 = 1 ,…

Nombre ode contraintes chimiques = (NP−1) NE

parce que 𝜇𝐴
𝑃=1= 𝜇𝐴

𝑃=2= 𝜇𝐴
𝑃=3… , 𝜇𝐵

𝑃=1= 𝜇𝐵
𝑃=2= 𝜇𝐵

𝑃=3, …
1

3. Equilibre de systèmes hétérogène, règle de Gibbs

T, p
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Gaz

-20 120

Température [ºC]

Liquide
Glace I

0 20 40 60 80 100

103

104

105

106

107

108

109
P

re
s
s
io

n
 [
P

a
] Tf (p)

Tv(p)

patm

pt

Fusion

Solidification

Vaporisation

Liquéfaction

Sublimation

1 phase  2 variables T et p

2 phases  1 variable

3 phases 

présentes:

point triple 

(invariant)

Déposition

3. Règle de Gibbs, NE = 1 (corps pur), variables T et p 

(*)

(*) Mathijs’s
experiment, slide 12
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4. Influence de la pression – Clausius-Clapeyron

On considère deux phases en équilibre, par ex. solide et liquide, d’un corps pur, à 

la température T et pression p, 𝐺𝑚
𝑙 =𝐺𝑚

𝑠 . D’après la règle de Gibbs, l’équilibre 

possède f =1 degré de liberté (courbe de fusion en T, p). La condition 𝐺𝑚
𝑙 =𝐺𝑚

𝑠 est 

valable tout le long de la courbe, et notamment 𝐺𝑚
𝑙 + 𝑑𝐺𝑚

𝑙 =𝐺𝑚
𝑠 + 𝑑𝐺𝑚

𝑠

Equation de Clausius-Clapeyron

p

T
Liq.

Sol.

Gs
Gs + dGs

Gl Gl + dGl
𝑑𝐺𝑚

𝑙 = 𝑉𝑚
𝑙 𝑑𝑝 − 𝑆𝑚

𝑙 𝑑𝑇
𝑑𝐺𝑚

𝑠 = 𝑉𝑚
𝑠𝑑𝑝 − 𝑆𝑚

𝑠 𝑑𝑇

𝑑∆𝐺𝑚
𝑠→𝑙 = 0 = ∆Vm

s𝑙𝑑𝑝 − ∆Sm
s𝑙 𝑑𝑇

𝑎𝑣𝑒𝑐 ∆Sm
s𝑙 =

∆Hm
s𝑙

𝑇𝑒𝑞
=

Lm

𝑇𝑒𝑞

𝑑𝑇

𝑑𝑝 𝑒𝑞 =
𝑇𝑒𝑞 ∆Vm

s𝑙

Lm

=
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∆𝑉𝑙𝑣 > 0
∆𝐻𝑙𝑣 = 𝐿𝑣 > 0

* 𝑑𝑇

𝑑𝑝
> 0

*

*

∆𝑉𝑠𝑙< 0
∆𝐻𝑠𝑙 = 𝐿𝑓 > 0

* 𝑑𝑇

𝑑𝑝
< 0

Anomalie de l’eau

Autres matières à anomalie liquide/solide: 

bismuth, silice, silicium, carbone

Exemple: eau

4. Influence de la pression – Clausius-Clapeyron
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Exemple: fer

∆𝑉𝛼𝛾< 0
∆𝐻𝛼𝛾> 0

𝑑𝑇

𝑑𝑝
𝛾𝛼

< 0

Idem pour 𝛼𝜀

 fcc = dense
𝜀 hcp = dense
 et  bcc = moins dense que  et 𝜀

La pente 𝜀   n′est pas nulle
La pente    est l’opposée de celle de   

Notes:

𝑑𝑇

𝑑𝑝
𝛼𝛾

=
𝑇𝑐 ∆𝑉

𝛼𝛾

∆𝐻𝛼𝛾

4. Influence de la pression – Clausius-Clapeyron
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A cause de la tension de surface , la pression 

interne de la particule est augmentée.

Equation de Laplace-Young :

5. Influence de la courbure d’interface

∆𝑝 = 𝑝𝑖𝑛𝑡 − 𝑝𝑒𝑥𝑡

R




int

ext

La variation de l’énergie du (système + 
extérieur) autour de l’équilibre est

𝑑𝑈𝑠𝑦𝑠𝑡+𝑒𝑥𝑡
= −𝑝𝑖𝑛𝑡 𝑑𝑉𝑠𝑦𝑠𝑡 − 𝑝𝑒𝑥𝑡𝑑𝑉𝑒𝑥𝑡 + 𝛾 𝑑𝑆𝑢𝑟𝑓

= −∆𝑝 𝑑𝑉𝑠𝑦𝑠𝑡 + 𝛾 𝑑𝑆𝑢𝑟𝑓 = 0

 ∆𝑝 4𝜋𝑅2𝑑𝑅 = 𝛾 8𝜋𝑅𝑑𝑅
 ∆𝑝 = 2𝛾/𝑅

R dR

L’augmentation de l’énergie molaire de Gibbs de la 

particule 𝛽 due à sa petite taille R est

On considère une particule de 

phase  de rayon R dans une 

matrice de phase .

𝛾

∆𝑝 = 2 𝛾𝛼𝛽/𝑅

∆𝐺𝑅
𝑚,𝛽

= 𝑉
𝑚,𝛽

∆𝑝 où 𝑉
𝑚,𝛽

est le volume molaire de 𝛽

Démo
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Deux films de savon séparés par une barre
Si on perce le film de droite, la tension de surface du 
film de gauche fait la surface se réduire brutalement 
et bouger la barre vers la gauche.

 = énergie de surface (J/m2) = 
tension de surface (N/m) 

L F



dx
W = Fdx = 2 Ldx
F = 2 L

Liquides: Ethanol 22 mJ/m2, Sang 56 mJ/m2, Eau 72 mJ/m2, Mercure (Hg) 440 mJ/m2

Solides: Etain(Sn) 680 mJ/m2, Cuivre (Cu) 1720 mJ/m2 , Tungstène (W) 2650 mJ/m2

Quelques ordres de 
grandeur à 20°C:

5. Influence de la courbure d’interface

Rappels sur la tension de surface 
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Effet Marangoni et moteur à savon:

• On fabrique un bateau avec une éponge pour la coque (et un cure dent et du papier pour le mat et la voile). 

• On met du liquide vaisselle juste sur l’arrière de l’éponge-coque.
Que va-t-il se passer?

5. Influence de la courbure d’interface

https://physiqueludique.fr/2021/05/un-moteur-a-savon/

https://physiqueludique.fr/2021/05/un-moteur-a-savon/
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L’expérience à deux ballons:

Deux ballons identiques sont gonflés à deux diamètres différents puis connectés par 
l’intermédiaire d’un tube. Que va-t-il se passer ? 

5. Influence de la courbure d’interface
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a) En forces de pression

Petit ballon Gros ballonp1 p2

P1 > p2

b) Ou en énergies de surface

Size effect
+ rubber stretch (  cst)

Beaucoup de personnes s’attendent à ce que les ballons atteignent la même taille par un 

mouvement d’air du grand vers le petit. Mais rappelez-vous, l’équilibre s’obtient quand la variable 

intensive p s’égalise, et non la variable extensive V. Comme la pression dans le petit ballon est plus 

grande que dans le grand ballon, l’équilibre sera obtenu quand le petit ballon se sera partiellement 

dégonflé dans le grand.  L’état final aura l’énergie G minimum, avec une pression uniforme dans un 

unique système à deux ballons connectés. On peut donc raisonner:

C’est en fait un peu plus complexe car  n’est 
pas constante (régime élastique)

Stiff

5. Influence de la courbure d’interface
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Pour une particule sphérique α de rayon R issue par refroidissement de la 

transformation   𝛼 (par exemple l  s), l’augmentation de son énergie de Gibbs 

par effet de taille est de:

appelé coefficient de Gibbs-Thomson.
avec

avec 𝑉
𝑚,𝛽

le volume molaire de la phase 𝛽∆𝐺𝑅
𝑚,𝛽

=
2𝛾𝛼𝛽

𝑅
𝑉
𝑚,𝛽

∆𝑇𝑅 =
∆𝐺𝑅

𝑚,𝛽

∆𝑆𝛼𝛽
𝑚

=
2 𝛾𝛼𝛽 𝑉

𝑚,𝛽

∆𝑆𝛼𝛽
𝑚 𝑅

∆𝑇𝑅 =
2𝛤𝛼𝛽

𝑅

𝛤𝛼𝛽 =
𝛾𝛼𝛽 𝑉

𝑚,𝛽

∆𝑆𝛼𝛽
𝑚

=
𝛾𝛼𝛽

∆𝑆𝛼𝛽
𝑣𝑜𝑙



R




ext
G Gm,

T

-Sm,

T
ab

¥

-Sm,

∆𝑇𝑅

∆𝐺𝑅
𝑚,𝛽

𝑇∞
𝛼𝛽𝑇𝑅

𝛼𝛽

5. Influence de la courbure d’interface

La particule  de taille R est donc déstabilisée par rapport 

à sa forme massive R =  (« bulk »), et la température de 

transition    est décalée vers le bas:

 𝛼
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Lingot d’or Température de fusion 1064°COr en poudre

Nanoparticules d’or

Quelle est la température de fusion 

de nanoparticules d’or?

• inchangée = 1064°C ?

• > 1064°C ?

• < 1064°C ?

5. Influence de la courbure d’interface /effet de taille
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Effet de taille sur la temperature de fusion, formule de Buffat-Borel (1975)

𝑤𝑖𝑡ℎ 𝜃 = 𝑇/𝑇𝑓

𝐷 = 2𝑟𝑠

5. Influence de la courbure d’interface /effet de taille
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𝑑𝐺𝑚 = −𝑆𝑚𝑑𝑇 + 𝑉𝑚𝑑𝑝

⇒ 𝐺𝑚 𝑇, 𝑝 = 𝐺𝑚 𝑇0, 𝑝0 −𝑆𝑚 𝑇 − 𝑇0 + 𝑉𝑚(𝑝 − 𝑝0)

Le long de la ligne de fusion 𝑇0, 𝑝0 --- 𝑇, 𝑝

𝐺𝑚
𝑠 𝑇0, 𝑝0

𝑠 = 𝐺𝑚
𝑙 𝑇0, 𝑝0

𝑙 &   𝐺𝑚
𝑠 𝑇, 𝑝𝑠 = 𝐺𝑚

𝑙 𝑇, 𝑝𝑙

⇒ (𝑆𝑚
𝑙 −𝑆𝑚

𝑠 ) 𝑇0 − 𝑇 = 𝑉𝑚
𝑠 𝑝𝑠 − 𝑝0

𝑠 − 𝑉𝑚
𝑙 𝑝𝑙 − 𝑝0

𝑙
𝑝𝑙 − 𝑝0

𝑙 =
2𝛾𝑙

𝑅𝑙
𝑝𝑠 − 𝑝0

𝑠 =
2𝛾𝑠

𝑅𝑠

air 

solid liquid

? 𝛾𝑙𝛾𝑠

• 1 élément (Au)
• Même nombre d’atomes d’Au dans les 

deux (solide ou liquide). Ici n = 1 mol  

𝑇0(𝑆𝑚
𝑙 − 𝑆𝑚

𝑠 ) = 𝐿𝑚avec

⇒ 𝐿𝑚 1 −  = 𝑉𝑚
𝑠
2𝛾𝑠

𝑅𝑠
− 𝑉𝑚

𝑙
2𝛾𝑙

𝑅𝑙

⇒ 1 −  =
2

𝐿𝑚 𝜌𝑠 𝑅𝑠
𝛾𝑠 − 𝛾𝑙

𝜌𝑠

𝜌𝑙

2
3

𝜌𝑙𝑉𝑚
𝑙 = 𝜌𝑠𝑉𝑚

𝑠 = 1

𝑉𝑚
𝑙

𝑉𝑚
𝑠 =

𝜌𝑠

𝜌𝑙
=

𝑅𝑙

𝑅𝑠

3

( = densité molaire)

𝐺𝑚
𝑠 𝑇, 𝑝 = 𝐺𝑚

𝑠 𝑇0, 𝑝0 − 𝑆𝑚
𝑠 𝑇 − 𝑇0 + 𝑉𝑚

𝑠 𝑝𝑠 − 𝑝0
𝑠

𝐺𝑚
𝑙 𝑇, 𝑝 = 𝐺𝑚

𝑙 𝑇0, 𝑝0 − 𝑆𝑚
𝑙 𝑇 − 𝑇0 + 𝑉𝑚

𝑙 𝑝𝑙 − 𝑝0
𝑙

𝑤𝑖𝑡ℎ  =
𝑇

𝑇0

5. Influence de la courbure d’interface /effet de taille

Démo
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Une particule sphérique  de rayon R en équilibre 

avec sa matrice  voit sa ligne de solvus (équilibre 

/) décalée vers les basses températures:

∆𝑇𝑅 =
2𝛤𝛼𝛽

𝑅

La composition d’équilibre avec la température T

devient alors

𝑋𝐵
𝛼,𝑅 = 𝑋𝐵

𝛼,∞ +
1

𝑚𝛼𝛽

2𝛤𝛼𝛽

𝑅

avec 𝑚𝛽𝛼 donné par  𝑚𝛼𝛽 =
𝑑𝑇𝑠𝑜𝑙𝑣

𝑑𝑋𝐵

T
e
m

p
é
ra

tu
re



 + 

Solvus / pour une 

particule  de rayon R

Solvus /

(interface plate)

XB

𝑇𝑅=∞
𝛼𝛽

𝑇𝑅
𝛼𝛽



𝛽

5. Influence de la courbure d’interface

𝑚𝛼𝛽 = 𝑝𝑒𝑛𝑡𝑒

𝑋𝐵
𝛼,𝑅𝑋𝐵

𝛼,∞

𝛽𝑅=∞

𝛽𝑅

XB

Gm

A B

mA



𝑋𝐵
𝛽,𝑅

𝑋𝐵
𝛽,∞

∆𝑇𝑅
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Résumé

∆𝑇𝑅 =
2Γ

𝑅

Effet de taille

∆𝑝𝑅 =
2𝛾

𝑅

∆𝐺𝑅
𝑚 =

2𝛾 𝑉𝑚

𝑅

Γ =
𝛾

∆𝑆𝑣avec

∆𝑋𝑅 =
2 Γ

𝑚𝛼𝛽𝑅

Notions de thermodynamique

U, F, H, G = énergies d’un système en interaction avec son environnement

𝑑𝑇𝑓

𝑑𝑝 𝑒𝑞 =
𝑇𝑓 ∆𝑉𝑓

𝑚

Lm

𝜕𝐺

𝜕𝑇 𝑝 = −𝑆
𝜕𝐻

𝜕𝑇 𝑝 = 𝑐𝑝 Se souvenir que S et  𝑐𝑝 sont des 

fonctions croissantes de T

Clausius-Clapeyron:

∆𝐺𝑓
𝑚 𝑇 = 𝐿𝑚

∆𝑇

𝑇𝑓

Fusion (f) ∆𝐻𝑓
𝑚 𝑇𝑓 = 𝐿𝑓 = 𝑇𝑓 ∆𝑆𝑓

𝑚 𝑇𝑓

Mélange Gm = XAGm
A + XBGm

B + RT(XA lnXA + XB lnXB) + W XAXB

Idéale: Régulière: Règle des phases de Gibbs

Pour T proche de la température de fusion

mA = 𝐺𝐴
𝑚 + 𝑅𝑇 𝑙𝑛𝑋𝐴 mA = 𝐺𝐴

𝑚 + 𝑅𝑇 𝑙𝑛𝑎𝐴




