Lecture Il: Thermodynamique des transformations de phase

Plan
Rappels de thermodynamique
Corps purs
Systemes binaires
Equilibre des systemes multi-éléments
Effet de la pression — equation de Clausius-Clapeyron
Effet de la courbure/taille — parametre de Gibbs-Thomson

abhwNEO

Objectif

Apres un bref rappel des corps purs, nous allons considérer la thermochimie d’un
alliage constitué de deux éléments A et B. Deux cas seront traités: les solutions idéales
et régulieres. Le potentiel chimique sera introduit, ainsi que la regles des phases de
Gibbs. Les effets des parametres externes ou internes sur le déplacement de
I'équilibre des phases seront detaillés: pression (Clausius-Clapeyron), courbure/taille
(Gibbs-Thomson, Buffat).
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Rappels de thermodynamiques

Variables (intensive, extensive) = (T, S), (p, V), (4;, N;)

(fermé/ouvert)
Bain chimique
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&QQ Bain thermique M &Qf\
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System

(isochore/expansible)

Autres couplages possibles: Bain mécanique

Y )
Mécanique (o, &) S
Electrique (V, q) Bain magnetique el
Magnétique (B,m) B Bain électrique
\'}
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Rappels de thermodynamiques

Convention : positif si I'échange est un gain pour le system 00 rev aVVrev aChimrev

i / /'
D
Energie interne U dU =TdS — pdV + Ui dN

Enthalpie H= U + pV dH =TdS + Vdp + z u; dN;

Energie de Helmholtz F=U - TS dF = —=8SdT —pdV + z i dN;

Energie de Gibbs G=U-TS +pV dG = —S§dT + Vdp + z i dN;

Comme U, S, Vand N ) > Energies potentielles d’interaction entre
sont des variables U+\|-TS+pV - z i Ni) = cst le systéme et son environnement
extensives, nous avons:

= Equation de Gibbs-Duhem SdT —Vdp + 2 Nidu; =0

Lien entre les changements des variables intensives
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Rappels de thermodynamiques

0H aSs T T o
Fonctions importantes: Cp = aT =T T H = j cde S = J Ldo
p p 298 o 0

¢, H, S, et G d'un corps pur sont des fonctions de (T,p)
Cy =25J mol' K' = 5.98 cal mol! K

(=]
1

25

Cy/cal-mol™ K™ ——»
w ~ (6]
I T T

N
T

C (Diamant) |

-

O)

| |
0 100 200 300 400

T/K —»

Enthalpie, H Capacité thermiue, c,
Entropie, S Energie de Gibbs G

La dépendance de C, en T est expliquée
par les théories de Debye et d’Einstein
(échanges par quanta).

Note: C, =~ C, pour les solides
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1. Corps purs

Capacités thermiques c, in J K* mol
Pour H, N, O, F, Cl, Br, | les valeurs sont celles de H,, N,, F,, Cl,, Br,, |, dans leur état de référence a 25°C et 1 atm.

(7-9)R/2 5R/2

(gaz diatomique)  (gaz monoatomique)

H He
28,836 ~3R (métaux) ( | \20,735

L ['Be B ¢ N o [Fline Cp-C, =R
2436 16,443 11,087 8517 29,124 29,378 31,304 20,786 pour un gaz
Na [Mg Al  Si P S Ar

2823 P4,869 242 10788 23824 2275 20,786

K ca sc T V ©f Mn Fe Co N Cu 2Zn Ga Ge As Se Kr

206 25020 2552 2506 2480 2335 2632 251 2481 2607 2444 2530 2535 23202 2464 25363 20,786

Rb  Sr Y Zr Nb Mo . Ru Rh Pd Ag Cd In Sn Sb Te Xe

3106 264 2653 2536 245 2406 2406 2498 2598 2535 2602 2674 27,112 2523 2573 20,786

€ Ba , Lu Hf Ta W Re ©Os Ir Pt AU Hg T Pb Bi

220 28,07 26,86 2573 2536 2427 2548 247 251 2586 25418 278419 2632 26,65 2552 = = Rn

Fr mn?a% = Lr Rf Db Sg Bh Hs Mt Ds Rg ©n Nh Fl Me Lv Ts Og
i
. La Ce Pr Nd | Sm Eu T Dy Ho Er Tm Yb
2711 26894 272 2745 2054 27,66 2891 277 2715 2812 27,03 2674
- AC Th u
= Pa e Np Pu Am Cm Bk Cf Es Fm Md No

Loi de Dulong et Petit
Pour un solide C,=C,=~3R avec R la constante des gaz parfaits R =8.314 J K mol! = VM kj
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1. Corps purs

Pour un systéme fermé I'énergie de Gibbs vaut G(T,p) = H — TS
dG = Vdp — SdT
AT et p = cst, I'équilibre du systéme est donné par le minimum de G.

Si le systeme est un corps pur d’élément A, et peut étre sous la forme de
deux phases (transformation allotropique), GL°f = n§G% + nfG,ﬁ

ou “m” réfere aux quantités molaires (en indice ou en exposant)
* nj +n,=nbde moles d’atomes A, fixé

« G% estindépendant de ng , et G,/fl est indépendant de nf

- dGY = dngGl + dnGh = dng (G& — GJ) = 0

= | G& = Gh
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1. Corps purs

On considére la transformation par chauffage d’'un corps pur de sa phase solide a sa
phase liquide (transition 15t ordre). A la transition, le systéme absorbe une quantité
d’énergie, I'enthalpie de fusion, aussi appelée chaleur latente L.

Gin(T) = Hip(T) = T S (T)

- 4 G (T) = Hin(T) = T Sy (T)
G,; —>1
= AT = Ty, G5(T) = GL(Ty), 4Gy, (T;) =0
g
b} S—1 S—1 N
G
=
(I
: - L., chaleur latente molaire de fusion
L Solide (s) Liquide (i) L,, # 0 pour une transition de 1t ordre
0 T, T = 0 pour une transition de 2¢™¢ ordre
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1. Corps purs

La fusion est un des nombreux cas dans lequel le systeme tend a modérer I'effet d’'un
changement extérieur (le chauffage est ralenti par 'absorption de la chaleur latente). Il existe
cependant des cas contraires dans lesquels le systeme réagit brusquement “par avalanche”
= Cristallisation de verres métalliques a base platine.

Mise au four du verre métallique a 250°C (température de cristallisation), et suivi en température.
On examine 3 cas A, B, C:

A
I\Iumgm 400 =] \
A _ _ B
@ - b : [
Alumin "‘ l
~ 300 - \
Platinum BMG g') | "'\ L
Platinum BMG — Py B E ol _;—; —_— = =
o = A
Aluminui m l ‘('u' 200 n I/
Alumina B i J/
Q /
&= ) C
) A
= 1004 /
I/ From Simon Mestre-Rinn,
6 student’s project, 2019, LMTM ' ‘
T T T T T T T T T T T - )
0 2000 4000 6000 8000 10000 12000
Temps (s)
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1. Corps purs

La calorimétrie différentielle, Differential Scanning
Calorimetry (DSC) permet déterminer les températures de
transformations endothermiques et exothermiques, et

de mesures les enthalpies associées. Il existe deux types lemgerahs
de DSC: _ _ - N\ R
* Par compensation de puissance pour maintenir la _ | Lt |/ | et | |
température égale entre I'échantillon et la référence qui | \ f——t
Sont danS deux enceintes Séparées mdwidual heaters SII'IQEE hﬂﬂ;‘ SOUNCE

« Par mesure de la différence de température entre a) power compensation DSC b) heat-flux DSC
I’échantillon et la référence mis dans la méme enceinte

Polyethylene terephthalate, PET, 23.1600 mg

Cold crystallization |)
Oxidatio || Integral 870.49 mJ
X1 n

Heat Flow -> Exothermic

|\ normalized 37.59 Jg*-1
c " Cross-Linking o Peak 149.86 °C
stallization :
& (Cure) Les enthalpies de Gisgwd SO
. s . nomalized -40.14 Jg*-1
transformation sont déduites Peak 248.42°C
. , . 10 '
Glass par intégration ,
Transition mw Glass Transition
Onset 80.17 °C
o Midpoint 79.26 °C
- Heating Rate 10.00 “Cmin*-1
: Midpoint ASTM,IEC  80.55 °C
Melting Midpoint Richardson 71.50 °C
Delta cp ASTMJEC  0.333 Jg*-1KA-1 :
Delta cp Richardson  0.344 Jg*-1KA-1 Meiting

--------------------- T

40 60 80 100 120 140 160 180 200 220 240 260 280 °C

Temperature
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1. Corps purs

Chaleur latente de fusion
L (Al) =11 kJ/mol

L¢ (Si) =50 kJ/mol

L, (Fe) =14 kJ/mol

L (ice) =6 kJ/mol

Entropie de fusion

AS; (Al) =12 J K mol?

AS; (Si) =30 J K1 mol?

AS; (Fe) =8 J Kt mol1v~R
AS; (ice) =22 J K mol?

AH =TAS = log(AH) = log(T)+log(AS)
Enthalpy of

Transition, kJ/mol
1000

* Boiling .}\‘

Melting y
100 o0

10

Entropie de vaporisation
Trouton law:
ASPV ~ S,=85-88JK1mol!l=10.5R

Déviation pour des liquides contenant des liaisons 11 o

hydrogene (H,0, éthanol etc)

Transition

50 100 500 1000 5000 Temperature, K
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1. Corps purs

On prend un verre a double paroi

On le remplit d’eau

On le place dans une enceinte et on y fait le vide

Que va-t-il se passer?

thermocouples

| pompe

Verre double paroi

EPFL Thermodynamics
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Corps purs

eau

Eau en ébullition

140 5

Evaporation  Vaporisation 420
= > 118
120 1 e
4 - 16
T 100 3 114
¥l J - 12
£E 110
i = ]
3 S 1s
o] =} ]
T S Is
a =
= 1 2 © 4 14
S 40 \ .5 42
o \! A ]
§ ST . 0
L R —— : ‘Subllmatlon 1-
] e B ] o 1.4
0 ; N ]
T a) T b)‘ v T 1
0 100 200
Time (sec)

a) 20 mbar (= 2 kPa) = pression de vapeur
saturante de I'eaua 17°C
b) Point triple de I'eau: 6 mbar, 0.01°C

From Mathijs Van der Meer,
2021, LMTM
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1. Corps purs

Relation tres utile pour les transformations du 1°" ordre type |l = s \

G (T) = H(T) — TSh(T)
G (T) = H3(T) = T S5,(T)

Y

AT =Ty AHLS(Tr) = TrASE S (Tf)
AT<TretT =Ty,

AHES(T) = AHES(Tf)

. o
ASLYS(T) ~ ASLS(T,) car transition du 1%t ordre

— AGES(T) = G3,(T) — GL(T) = AHLS(T) — T ASES(T)
~ AHES(T;) — T ASES (Tp) = AHES (Tf) — TlfAH};S(Tf)

Energie libre de Gibbs molaire, G™

AT
0 | AGLS(T) = T—fAH,ln_’s(Tf) = AT ASyS(Ty)
avec AT = (T — Tf) AG{%_)l(T) — AT_TLm
"

Peut étre retrouvé directement par la différence de pentes de G entre liquide
et solide: A(=S) = AG/AT
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2. Systemes binaires, potentiel chimique

Le potentiel chimique, u,, est défini par le gain en énergie de Gibbs du systeme entier
lorsque dn, moles d’atomes Ay sont ajoutés . Pour un systeme binaire, c’est une
fonction de (X,, Xg, p,T) ou X, et Xg sont les fractions molaires de A and B (X, + Xz =1)

oG
000000000 0eo0 Ua = | 53—
X JoX NN NeoX XoX NoX ng,p,T
000000000080

00000000080 e
0000000000 8O0 dGz_SdT+VdP+Zﬂidni

ON NON NON NON NON NON |

SiT,pcst: dG = updny + ugdng

On ajoute A and B atomes peu a peu de telle maniere que X, et Xz ne changent pas,
donc yu, et ug restent constant. Quand nous avons n, + ng moles de (A+B), alors:

Ny Np
G = gy + Up Np G"= Ug Xa + g Xp avec “4 ng +npg and 75 ny +ng
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2. Systemes binaires, potentiel chimique

dG = Ua dnA + Up dnB = dGm= ‘uA dXA + Up dXB

ag™

= X, = Me T Ha

avec dX, = —dXp

— Les potentiels chimiques sont des
fonctions de la fraction molaire X; et se

trouvent graphiquement par
I'intersection de la tangente a la courbe

de GM™ avec les axes verticaux

Note :

Gr=G"Xy=1) = ps(X, = 1)
Gg' = Gm(XB =1 =ug(Xp=1)

EPFL Thermodynamics
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2. Systemes binaires, solutions idéales

Note: IV, = nombre d’Avogadro =~ 6,02.10%3, R = const. des gaz parfaits = N kg = 8,31 ] mol 1K1

Considérons un systeme constitué de n, (= N, /N, ) moles of A and ngz moles of B.

Avant meélange, I'énergie de Gibbs de ce systéme est

-0 0 ole a®_ O
000 0 |@® 0¢
Q009 Oleg © 09
O

200 %0 .o'ooo
oo ©Op¢ oo ©

avec

G =n,Gy" + n,GF

G™ =X,G+ X, GF!

n
2 and X, =
nag+ng

X, =

np

na+ng

Dans I'hypothése d’une solution idéale, g, = 655 = &5 (Energies de liaison), Le mélange augmente
I'entropie configurationnelle (entropie de meélange). L'énergie de Gibbs devient:

o © O

© @ O
e 00 0O

© o0 06

e20% ® o

)
O O. .OQ QO..

OO.QO
00 o

G = nGy" + n;,Gg' — kgT

(Ng+Np)!'—
|n —4—B8_
Ny!Np!

(Stirling) l

—

Gm = XAG/TIn +XBGgl + RT (XA lnXA +XBlnXB)

at
NA+B

at
NA

EPFL Thermodynamics
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2. Systemes binaires, solutions idéales

G™ = paXy + upgXp

Gm“

—_
—
—_
—
—_
—
—_
—

[

Us = GJ*+ RT InX,
Ug = Gg* + RT InXp

-
—
-
—

AG™= RT (X,

lnXA +XBIHXB)

—
—
—
— —

—

—
____———
—
— —

EPFL Thermodynami
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2. Systemes binaires, solutions idéales

Effetde T
SiTT,GM, et GM; 4 (de —=S™, dT et —SM, dT)

|
Pente:
7p] —_—
s dG™ o
O X, = Ho ~#a = G§' = GJ' + RT InXp = RT InX,
[
go)
Qo I agm B _ dG™
© 1mm Xp—0 = —® llmm Xxg—o1 = 1
e
E 2
m
'%)7 Dérivée dG =RT<1 N 1 ): RT
@ seconde: dX} Xg 1—Xp X, X5
c
N (minimum at Xz =%)
: Xg Courbure d’une fonction courb = —2
o O O—= (1+f,2)3/2

A Xs 7 B = courb(T,) > courb(T;)

= La courbure de I’énergie de Gibbs s’accentue avec T.
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2. Systemes binaires, solutions régulieres

Les solutions réguliéres sont d’'un point de vue de la distribution des atomes comme les solutions
idéales (comme si les atomes s’ignoraient), sauf qu’on prend malgré tout en compte leurs énergies
d’interaction. Un terme d’enthalpie de mélange vient donc s’ajouter a I'entropie de mélange. En prenant
en compte les liaisons entre proches voisins, avec z le nombre de voisins (= 4 en 2D), nous avons:

looo0c0co0ceee ceceo0co0o0e@
00000000 T |10000 0000
00000000 <|00000000
CNONOCRONGI N N _ Ce00 00000
Hm=XANaz7+XBN 8'%3 Hm’=Naz(Xja47A+X§€}%B+XAXBeAB)

L'enthalpie de mélange est AH]. = H™ — H™ = Q X,Xp avec Q = N, z (EAB _ EAA+€BB)

L'énergie molaire de Gibbs est Gm=X,GM, + XgGM; + RT (X, InX, + X;InXg) + 2X, X,

EPFL Thermodynamics Phase transformations 1l - 19



2. Systemes binaires, solutions régulieres

Cas Q > 0: Les élements A and B « ne s’aiment pas ». A haute température le terme entropique
—TAS]):.. domine et G™ reste convexe. A basse température, c’est I'enthalpie de mélange AH;;,
qui domine menant a une démixtion et un « gap » de miscibilité.

T haute

Gap de miscibilité

AI_Immix
(// i |

A Xig X5 B Xg
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2. Systemes binaires, solutions régulieres

Cas Q < 0: Les éléments A et B “s’aiment bien”. G™ reste convexe a toutes les températures et
I'enthalpie de mélange renforce I'effet de I'entropie de meélange.

Gml

RT In ag

RT In a,
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2. Systemes binaires, solutions régulieres

Nous avons vu que pour les solutions régulieres
GMm=X,GM, + X;GM; + RT (X, InX, + X5 InXy) + 2X, X,
Or nous avons vu aussi que I'énergie de Gibbs peut toujours s’écrire
M= pp Kpt pg Xy

On peut identifier p, et pg les facteurs de X, et X depuis la 1°® équation en écrivant
terme 2 X,X; en utilisant le fait que 2 X, Xg = 2 (X,2 X5+ X, Xg?) = 2 (X2 Xg + X, Xg?)

ﬁ> iy =G+ RT InX, + QXg”* = GI* + RT InX, + Q (1 — X,)?
tg = GI + RT InXp + Q X, = GI* + RT InXp + Q (1 — Xp)?

G™= pig X4 + up Xp

dG™ = Uy dXA + Ug dXB = XAd/-lA + XB d.uB =0 (Gibbs—Duhem)

De plus: {

Nous obtenons donc 28 =24 _ Xa*Xp) s _ ) gy, = d(ug — 11y)
X4 Xg X4

m

Rappelons que la pente de la courbe de I'énergie de Gibbs est % = Ug — Uy,
B

d?¢™  d(ug-— 1d
— = (”’B ”’A) — _ﬂ d2 Gm RT
dXg dXpg X4 dXpg — —
pa : , T dXz  XuXp
Et donc la courbure de I’énergie de Gibbs d’une solution réguliere est

et dérivons encore

2Q)
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2. Systemes binaires, solutions régulieres

Dans tous les cas, QQ > 0 ou Q < 0, les potentiels chimiques de A et B, u, et ug deviennent des
fonctions non plus des fractions molaires mais des activités chimiques a, et ag selon:

= Gm I GA'—Ha
Ha = GA + RT lTlClA a, = e —RT
< om
= Gg' + RT lna _Gp —HB
Up B B ap =e  RT

Pour des solutions binaires régulieres,

Question: “activité”, mais activité a quoi, au mélange ou a la démixtion?

Réponse : Grande valeur de ag — up €levé — B moins stable en solution
— tendance a la démixtion — activité a quitter la solution

Pour la transformation liquide — gaz, une forte activité d’'un atome ou
d’'une molécule signifie une grande volatilité (et donc une plus grande

pression saturante)

_y 1z g a
I'activité de chaque élément est définie par: 5
10F mo=0
( )2 (W, 0=0}
Q1 — Xy ! m.0<0)
ay, = Xy ex "o Ny
A A p < RT ) ; Q@o
2 06- ! .\b‘z’
ar = Xp ex (1 — Xs)") s ¥
B=ABEP\ TR {5 S
-g) Q = 218 (-] mol-1«
025
Le coefficient d’activité de B est défini par yz = i—B (deHenry __...-----
B (] S b
C’est la pente de la courbe d’activité. R €
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Pour info 2. Systemes binaires, solutions régulieres

Pour une solution A-B,

. L , Q
—> Loi de Henry (activité du soluté B): Xp =~ 0 = y5 = exp (ﬁ)
Pour une solution avec A fortement dilué dans B,
—> Loi de Raoult (activité du solvant B): Xz = 1 = y5 = 1 (comme une solution idéale)

Ces deux lois sont le plus généralement utilisées pour des équilibres liquides — gaz.
Note: si I'équilibre liguide-vapeur du soluté répond a la loi de Henry, alors celui du solvant
répond a la loi de Raoult, et réciproquement

Loi de Henry (sans démo) : A température constante et a saturation, la quantité de gaz dissous
dans un liquide est proportionnelle & la pression partielle qu'exerce ce gaz sur le liquide:| X} = H pg
avec pg = X;,?P (loi de Dalton, valable pour les gaz parfaits ou pour X;g &K 1)

Par exemple en un point ou la pression est le double de la pression atmosphérique (c'est le cas dans I'eau a 10,3
m de profondeur), chaque gaz de l'air pourra se dissoudre 2 fois mieux qu'en surface. Ceci explique le probleme
des plongeurs : en profondeur, I'azote de I'air (que le plongeur stocke puisque les cellules ne consomment que
I'oxygene) a tendance a se dissoudre dans le sang du plongeur. Si celui-ci remonte trop vite, I'azote dissous va
avoir tendance a se dilater rapidement dans I'organisme, ce qui peut créer des bulles dans les vaisseaux sanguins
et une mort par embolie gazeuse.
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Pour info 2. Systemes binaires, solutions régulieres

Loi de Raoult : Pour une solution idéale liquide dont la phase vapeur est un mélange de gaz parfaits, a
température constante, la pression partielle pg de la phase vapeur d'un constituant B est égale au produit

de sa fraction molaire en phase liquide par sa pression de vapeur saturante (B pur):|pg = XgP XB ptt

avec P pression totale de la vapeur.

Note: pour un corps Bpur, XJ =Xt =1= pg =P = p§*
Démo:
Aréquilibre uh(P,T,X}) =ug(P,T,X3), avec

« up(P,T,X}) =uk (P, T)+ RT InX}
« wug(P,T,XE)=pg (P,T)+RT InX]

V& = volume molaire du gaz B pur (parfait)

De plus pour le corps pur B —>p V"™ =RT
* ug (P, T) =~ ug (g™, T) /
(P T) = g T + [ sar Vg""dp = pp (3", T) + RT In (pﬁat)

o uE @I T) = ug (p3*, T)

= X} = X pgat , cqfd
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2. Systemes binaires, solutions régulieres

Effet de la température sur le solubilité

On considére une solution binaire A-B dans laquelle B est soluble dans
la phase o phase faite principalement de A, et A est quasi insoluble
dans la phase 3 phase (~100% B). On considére aussi que A et B
forment une solution réguliere dans la phase a avec Q > 0.

Q(1—XB)2)

o uf =Gg"" +RT lnag avec ag = XBexp( —
= Gg"" 4+ RT InXg + Q(1 — X)?
* g =Gy

A l'équilibre ug = ub

- RT InX§ + Q(1 — X§)?*= —AGy avec AGy = G — GJ*P

Pour X <1, Xj =-exp (— AG}’?;“)

En écrivant AGgy = AHyz — TASy , il vient: Xg =Aexp (— IS_T) avec

Gma

(b)

(a)

G @T,
4G
G

(04
I/[ solvus
|

o+

—

I
|
.¢\ie
Xq 8

Q=AHy +Q>0

—AS
A =exp <—R B )
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3. Equilibre de systemes hétérogene, regle de Gibbs

Pour un systeme binaires A-B présentant deux phases a et vy, le
potentiel chimique de chaque élément A ou B doit étre égal dans
chaque phase:

ug =ph g =l

L'énergie de Gibbs de chaque phase a ou f dépend des
fractions molaires, de la température T et de la pression p.

Il existe 4 variables, T, p, X§, XBB , mais aussi les 2
contraintes d’égalités des potentiels chimiques.

— 4 — 2 = 2 degrés de liberté

Sion fixe T et p, les fractions molaires de B dans les phases

aety, X5 et Xg, deviennent elles aussi fixées. ug = b

GIEGS FREE EMERGY

Gibbs free energy

IUSESY SN

T et p fixées

e ugtx)

X5 ° x5 a_ P
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3. Equilibre de systemes hétérogene, regle de Gibbs

On étend le raisonnement a un systeme a Ng éléments et N, phases

Phases 1, 2, 3
Nombre de variables = 2 + NpNg o /\1 » /\2 . /\3 .
2 P () P () xel ()
Nombr ntraintes numéri =N £
@ ombre de contraintes numériques P é Xt |, ul X2 |, u3 XB3T“’35’
parceque Y X;~) . =1 %X; 7 . =1,. .
\? Xt ue X?| ) ué X, u
@ Nombre ode contraintes chimiques = (Np—1) Ng N v V "/
parce que i, ~'= T = upT o up =g t= up @

Nombre de degrés de libertés f = Nb de variables — Nb of contraintes = 2 + N; — N,

Regle des phases Gibbs: f =2+ Ny — Np
I
Lp
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3. Regle de Gibbs, Ng = 1 (corps pur), variables T et p

[} $
109 & 1 phase — 2 variables T et p
[
108 &
2 phases — 1 variable
T 107 |
a, Liquide /
S 106 |Glace |
@ Vaporisation
3 phases o 105 ——  Pam = — .
présentes: | A — — _
point triple 104 Solidif Liquéfaction
(invariant) B
T
Tt AP Gaz
Déposition == - Sublimation | | L
20 O 20 40 60 80 100 120
Température [°C] (*) Mathils's

experiment, slide 12
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4. Influence de la pression — Clausius-Clapeyron

On considere deux phases en équilibre, par ex. solide et liquide, d’'un corps pur, a
la température T et pression p, G.,=GS,. D’aprés la régle de Gibbs, I'équilibre
posseéde f =1 degré de liberté (courbe de fusion en T, p). La condition G.,= G3, est
valable tout le long de la courbe, et notamment G, + dG.,=G3, + dG3,

_dGlL, =Vkdp — Sh,dT

— dG,:,g,l _ Vn‘idp —S,‘gldT T ’ G G'+ dG!
iq.
dAGS™ =0 = AV _s2tdp — AS, 2 dT Sol.
Gs Gs+ dGs
s—l L
avec AS, SVl = —"— =7 P
Teq Teq

:> Equation de Clausius-Clapeyron
(dT) Toq AV,
eq =

dp L

m

EPFL Thermodynamics Phase transformations Il - 30



4. Influence de la pression — Clausius-Clapeyron

Exemple: eau

=PrL

S 3
=3
%
g z
2 £
B = =
o O
=)
& - |
Q < s 9 , AVE7V >0 dT
= -D —
Z o 3 AHl_>v=Lv>0 dp>0
= |
0,
2
¥ ow -
®© T Q Anomalie de l'eau
2, = AVs—)l< 0 .
= *
Q 5 . B s—>1 —<0
o
oL ¥ 0 4 S
% % —
o O
. = foge
e, B w Yo
7 o = Autres matiéres a anomalie liquide/solide:
3 B = bismuth, silice, silicium, carbone
o o
2 3V
o
()
] | >
1 2 3
@ = o
a »w
o 5]
ia)

Thermodynamics Phase transformations 1l - 31



4. Influence de la pression — Clausius-Clapeyron

Exemple: fer

20001 Liquid iron

160 |
~iron

1200+

——
—
-—"‘
—

Temperature °C
r o
o o
e 9

0 25 50 75 100 125 150 175
Pressure, kbar .

v fcc = dense
€ hcp = dense
a et  bcc = moins dense que y et €

(dT> T. AV&Y
el _ —
dp),.,, ~ AH*Y

AVE?Y < () dT
AHE™Y> () dp <0
b Yy—>a

ldem pour a—¢

Notes: Lapentee— vy n'estpasnulle
La pente y — & est 'opposée de celle de y — a

EPFL Thermodynamics
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5. Influence de la courbure d’interface

Démo

On considere une particule de
phase 3 de rayon R dans une
matrice de phase a.

Ap = Dint — Pext

A cause de la tension de surface y,, la pression

interne de la particule est augmentée.

La variation de I'énergie du (systéme +
extérieur) autour de I'équilibre est

Equation de Laplace-Young : |Ap = 2vy,5/R AUsystrext

= —Dint styst — Pext@Vext + v dSurf

= —Ap dVsyse +y dSurf =0
— Ap 4nR?dR = y 8nRdR

L'augmentation de I'énergie molaire de Gibbs de la — Ap = 2y/R

particule f due a sa petite taille R est

AGTF = v™F Ap

< ym, .
ot V™F est le volume molaire de 5

EPFL Thermodynamics
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5. Influence de la courbure d’interface

Rappels sur la tension de surface

y’ ¥ = F W = Fdx = 2y Ldx
F=2yL

v = énergie de surface (J/m?) =
tension de surface (N/m)

Si on perce le film de droite, la tension de surface du
film de gauche fait la surface se réduire brutalement
et bouger la barre vers la gauche.

Deux films de savon séparés par une barre

Quelques ordres de Liquides:  Ethanol 22 mJ/m?2, Sang 56 mJ/m?2, Eau 72 mJ/m2, Mercure (Hg) 440 mJ/m?
grandeur a 20°C: Solides: Etain(Sn) 680 mJ/m?, Cuivre (Cu) 1720 mJ/m?, Tungsténe (W) 2650 mJ/m?
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5. Influence de la courbure d’interface

Effet Marangoni et moteur a savon:

* On fabrigue un bateau avec une éponge pour la coque (et un cure dent et du papier pour le mat et la voile).
* On met du liguide vaisselle juste sur l'arriere de I'éponge-coque.
Que va-t-il se passer?

\7
: IC
@%ﬁ Un moteur a savon 0
S Copy link

—

S ;!!i L
| MORE VIDEOS

P o) 029/046 B & Youlube

https://physiqueludique.fr/2021/05/un-moteur-a-savon/
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5. Influence de la courbure d’interface

'expérience a deux ballons:

Deux ballons identiques sont gonflés a deux diametres différents puis connectés par
I'intermédiaire d’'un tube. Que va-t-il se passer ?
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5. Influence de la courbure d’interface

Beaucoup de personnes s’attendent a ce que les ballons atteignent la méme taille par un
mouvement d’air du grand vers le petit. Mais rappelez-vous, I'équilibre s’obtient quand la variable
intensive p s’égalise, et non la variable extensive V. Comme la pression dans le petit ballon est plus
grande que dans le grand ballon, I'’équilibre sera obtenu quand le petit ballon se sera partiellement
dégonflé dans le grand. L’état final aura I’énergie G minimum, avec une pression uniforme dans un
unique systeme a deux ballons connectés. On peut donc raisonner:

a) En forces de pression

Petit ballon P4 !»—t P, Gros ballon
P,>p,;

b) Ou en énergies de surface

:®

S.A =484 cm?
total surface area = 968 cm?

net surface area increase of 43 cm?

5.A =662 cm? \
total surface area =925 cm*

5.A =755 cm?

total surface area = 821 cm’

net surface area decrease of 104 ¢m?

C’est en fait un peu plus complexe car y n’est
pas constante (régime élastique)

Size effect StE’ESS (force)
stiff |t rubber stretch (y = cst)

1: Balloon Inflation

n
n

stiffer

stretchy

1034

p\(‘S',UFEr(‘(\(htsa maamum :
stiffer

i Strain (amount of stretch)

pressure drops as inflation continues

burst the balloon
1014

1001}/ stan infating

E‘ : Time () "

EPFL Thermodynamics
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5. Influence de la courbure d’interface

Pour une particule sphérique o de rayon R issue par refroidissement de la
transformation § — a (par exemple | — s), 'augmentation de son énergie de Gibbs

par effet de taille est de:

2y
aGpt ==L ymF

avec V™" le volume molaire de la phase g

La particule B de taille R est donc déstabilisée par rapport
a sa forme massive R = « (« bulk »), et la température de
transition ¢ — f est décalée vers le bas:

AGm'B 2 yaﬂ Vm»ﬁ
|ASE 5 5 " [as: | R

AT, =

= | ar, =21;§‘ﬁ

ymP
avee FaB Vaﬁ yaﬂ

G Gm,a

!

S e

|A5a_)ﬂ |A | appelé coefficient de Gibbs-Thomson.

EPFL Thermodynamics
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5. Influence de la courbure d’interface /effet de taille

Lingot d’or Or en poudre Température de fusion 1064°C

Nanoparticules d’or
Y .v" '-.v.....

‘:"'..?:. .: Quelle est la température de fusion
,ggo::' 'o:.::gz de nanoparticules d’or?
.':‘. .:: B e :':‘o . ,
.33.'. sos ‘.0.0:....’:. . * inchangée = 1064°C ?
K sl
<4 i © <1064C

Direct Mag: 60000x
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5. Influence de la courbure d’interface /effet de taille

Effet de taille sur la temperature de fusion, formule de Buffat-Borel (1975)

PHYSICAL REVIEW A VOLUME 13, NUMBER 6 JUNE 1976

Surface Science 156 (1985) 487-494 487

Size effect on the melting temperature of gold particles* North-Holland, Amsterdam

Ph. Buffat and J-P. Borel
Laboratoire de Physique Experimen:ale, Ecole Polytechnique Fédérale-Lausanne, Lausanne, Switzerland
(Received 2 December 1975)

SURFACE STRESS AND SIZE EFFECT ON THE LATTICE PARAMETER
IN SMALL PARTICLES OF GOLD AND PLATINUM

b Tm (°K)
1300 m.p. bulk .. C. SOLLIARD and M. FLUELI
r Institui de Fhysique Expérimeniale, Ecole Polytechnique Fédérale de Lausanne, CH -1013 Lausanne,
- Switzeriand
i A
1000 “[‘] GOLD (220) -
~ af3
1 _ 6 - 2 _ Eﬁ 409 T Izo'f“
- D L Ys— V1 0
s 5 i
SOOI_ with 6 = T/Tf
i D =2rS
300 L L 1 1
0 50 100 150 200 D(A)
FIG. 6. Experimental and theoretical values of the
melting-point temperature of gold particles, assuming 4.03 ; ' } ; } -
validity of the first model in order to calculate the dif- 100 200 300 400 500 A00 TIK]
fracted intensities and obtain the Debye-Waller factors:

. Fig. 2. Variation of the lattice parameter as a function of the temperature for gold samples of
cireles, present work; squares, Sambles (Ref. 28); the different mean sizes.

solid line results from a least-squares fit to Eq. (13)
using all of the experimental points.
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5. Influence de la courbure d’interface /effet de taille

Démo

dG,, = =S, dT + V,,dp
= Gu(T,p) = G (To, po) —Sm (T —Tp) + Vi (p — Do)

| Gn(T,p) = Gu(To,po) = Su(T = To) + Vin(p° — p0)
GL(T,p) = GL(Ty, po) — SL(T —Ty) + Vi (p' — p)

Le long de la ligne de fusion (Ty, pg) --- (T, p)
Gin(To,03) = Gin(To,p0) & G (T,p°) = Gy (T p")

= (Sh =S5)(To = T) = Vis(pS — p3) — Vit (p' — pb)

T
with 0 = —

=>L.(1-0)=1, T,

l
RS~ VmTRU

2
3

1 —0)=—~ vy
M T A v

? air
Vs —> M
. ‘

1 élément (Au)
Méme nombre d’atomes d’Au dans les
deux (solide ou liquide). Ici n = 1 mol

To(Sm = Sim) = Ly,

A% 2y°
4 T

avec

Pl—P(g:F p

(p = densité molaire)
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5. Influence de la courbure d’interface

o \A Br 'ﬁ?}

\
\

-
|
|
|
o) ,R
A X2 xB

Une particule sphérique a de rayon R en équilibre
avec sa matrice f3 voit sa ligne de solvus (équilibre
o/f3) décalée vers les basses températures:
2l

R

La composition d’équilibre avec la température T
devient alors

ATR -

1 2[,
X = X3 + b
maﬁ R
A AT soly
avec mg, donné par mypg = T

Température

Solvus o/p
(interface plate)

,\ Solvus o/B pour une

particule 3 de rayon R

EPFL Thermodynamics
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Résumeé

Notions de thermodynamigue

U, F, H, G = énergies d'un systéme en interaction avec son environnement

3G oH\
ar)r =" ar Jr ~ P

Se souvenir que S et ¢, sont des
fonctions croissantes de T

Fusion (f)  AH(T;) = Ly = Ty ASF"(T)

Pour T proche de la température de fusion AG}"(T) =L, ,—

Ty
dT; Tr AV
dp /%7 L

Clausius-Clapeyron: (

m

Mélange G™=X,GM, + X;GMg + RT(X,InX, + X5InXy) + Q X, X;

l

Réguliere:  u, = G4* + RT Inay

Idéale: u, = G4* + RT InX,

Effet de taille
2y
App = —
Pr R
2y vm
AGT =
R R
T 2T
R™R
avec I = _yv
AS
2T
AXp =
maﬁR

Régle des phases de Gibbs
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